Interactive Formal Verification 7: Inductive Definitions

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

- The set of even numbers is the least set such that
 - 0 is even.
 - If *n* is even, then n+2 is even.

- The set of even numbers is the least set such that
 - 0 is even.
 - If n is even, then n+2 is even.
- These can be viewed as introduction rules.

- The set of even numbers is the least set such that
 - 0 is even.
 - If n is even, then n+2 is even.
- These can be viewed as introduction rules.
- We get an *induction principle* to express that no other numbers are even.

- The set of even numbers is the least set such that
 - 0 is even.
 - If n is even, then n+2 is even.
- These can be viewed as introduction rules.
- We get an *induction principle* to express that no other numbers are even.
- Induction is used throughout mathematics, and to express the semantics of programming languages.

Inductive Definitions in Isabelle

00		🧕 Ind.thy
00 co 🛛 🔺 🕨	🗴 🛏 🖀 🔎 🚯 烯	F 😄 🤣 🚏
theory Ind imports Main begin		
<pre>subsection{*Induc</pre>	tive definition of t	the even numbers*}
inductive_set Ev ZeroI: "0 : Ev"	: "nat set" where	
Add2I: "n : Ev	=> Suc(Suc n) : Ev"	
u-:**- Ind.thy	Top L10 (Is	sar Utoks Abbrev; Scripting)
Proofs for induct Proving monoton	lve predicate(s) "Ev	<i>ι</i> ρ"
-u-:%%- *response	* All L2 (Is	sar Messages Utoks Abbrev;)

Even Numbers Belong to Ev

$\odot \odot \odot$	in ∂	d.thy	\bigcirc
သ ၀၀ 🗶 🔺 🕨 🗶 🕨	। 🖀 🔎 🕦 🐖 🖨	9 🙀	
<pre>text{*All even numbers lemma "2*k : Ev"</pre>	belong to this set	:.*}	6
<pre>apply (induct k) apply auto apply (auto simp add:</pre>	anot Add21)		
done			
			4
-u-:**- Ind.thy	6% L17 (Isar l	Jtoks Abbrev; Scripting)
proof (prove): step 1			
goal (2 subgoals): 1, 2 * $0 \in E_V$			
2. $\bigwedge k$. 2 * $k \in Ev \implies$	2 * Suc $k \in Ev$		
-u-:%%- *goals*	Top L1 (Isar F	Proofstate Utoks Abbrev	;)
tool-bar next			1.

Even Numbers Belong to Ev

Proving Set Membership

$\odot \odot \odot$	Ind.thy	\bigcirc
00 CO 🛛 🔺 🕨 🗴	H 🖀 🔎 🕦 🕼 🗢 🗢 🚏	
<pre>text{*All even numbers lemma "2*k : Ev" apply (induct k)</pre>	s belong to this set.*}	Ô
<pre>apply auto apply (auto simp add: done</pre>	ZeroI Add2I)	
-u-·**- Ind thy	6% 118 (Tsar Utoks Abbrev: Scripting)	4
	0% LIG (ISUI OLOKS ADDIEV, SCIEPCING)-	n
proof (prove): step 2		
goal (2 subgoals):		
1. $0 \in Ev$		
$2. /(k. 2 + k \in EV =$	\Rightarrow Suc (Suc (2 \neq k)) \in EV	
		Ų
		v
-u-:%%- *goals*	Top L1 (Isar Proofstate Utoks Abbrev;)	
LOOL-DUI HEXL		11.

Proving Set Membership

$\odot \odot \odot$		Ind.thy	\bigcirc
	H 🖀 🔎 🌔	🗊 🕼 🤤 🤣 🚏	
<pre>text{*All even numbers lemma "2*k : Ev" apply (induct k) apply auto apply (auto simp add:</pre>	s belong to ZeroI Add2I	this set.*}	0
• done		->	
			×
-u-:**- Ind.thy	6% L19	(Isar Utoks Abbrev; Scripting)	
proof (prove): step 3			Π
goal: No subaoals!			
			A V
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)	
tool-bar next			11.

$\odot \odot \odot$		Ind.thy	\odot
00 00 X 🔺 🕨 Y I	H 🖀 🔎 🌔	🕦 🕼 🤤 🤣 🐕	
<pre>text{*All even numbers lemma "2*k : Ev" apply (induct k)</pre>	belong to	this set.*}	0
apply (auto intro: Zer	oI Add2I)		
• done			- 11
			- 11
			- 11
			4
	100/100	(Tean Utoka Abbrown Coninting)	Y
-u-:**- Ind.thy	10% L20	(Isdr utoks Abbrev; Scripting J	6
proof (prove): step 2			
anal:			
No subgoals!			
			U
			Ă
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)	
tool-bar goto			1

• Proving something about every element of the set.

- Proving something about every element of the set.
- It expresses that the inductive set is *minimal*.

- Proving something about every element of the set.
- It expresses that the inductive set is *minimal*.
- It is sometimes called "induction on derivations"

- Proving something about every element of the set.
- It expresses that the inductive set is minimal.
- It is sometimes called "induction on derivations"
- There is a *base case* for every non-recursive introduction rule

- Proving something about every element of the set.
- It expresses that the inductive set is minimal.
- It is sometimes called "induction on derivations"
- There is a *base case* for every non-recursive introduction rule
- ...and an *inductive step* for the other rules.

Ev Has only Even Numbers

$\odot \odot \odot$		Ind.thy
∞ ∞ ∡ ◄ ► ⊻ >	🕂 🖀 🔎 🐧	🕽 🕼 🤤 🤣 🚏
<pre>text{*All elements of f lemma "n ∈ Ev ⇒ ∃k. r apply (induct n rule: apply auto apply arith done</pre>	this set are 1 = 2*k" Ev.induct)	'e even.*}
-u-:**- Ind.thy	13% L43	(Isar Utoks Abbrev; Scripting)
proof (prove): step 0 goal (1 subgoal): 1. n ∈ Ev ⇒ ∃k. n =	2 * k	
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)

Ev Has only Even Numbers

Ev Has only Even Numbers

An Example of Rule Induction

$\odot \odot \odot$	Ind.thy	\supset
00 00 🗶 🔺 🕨 🗴 🕨	4 🖀 🔎 🚯 🐖 😄 🤣 🚏	
text{*All elements of t lemma "n \in Ev $\implies \exists k.$ n	this set are even.*} n = 2*k"	6
<pre>apply (induct n rule: E apply auto apply arith done</pre>	Ev.induct)	
······	129 120 (Tean Utaka Abbrau)	4
-u-:**- Ind.tny	13% L39 (Isar Utoks Abbrev; Scripting)	6
proof (prove): step 1 goal (2 subgoals): 1. ∃k. 0 = 2 * k 2. Ap. [p ∈ Ev: ∃k, p	$-2 * k^{2} \implies \exists k Suc (Suc n) = 2 * k$	
2. / (II. III C EV, -K. II	$r = 2$ $r_{\rm M} \rightarrow -r_{\rm N}$ suc (suc ii) = 2 $r_{\rm M}$	
-u-:%%- *goals*	Top L1 (Isar Proofstate Utoks Abbrev;)	
tool-bar next		11.

An Example of Rule Induction

$\odot \odot \odot$	Ind.thy	D
00 00 I 🔺 🕨 I 🛏	। 🖀 🔎 🕦 🕼 🤤 🤣 🚏	
<pre>text{*All elements of th lemma "n ∈ Ev ⇒ ∃k. n apply (induct n rule: Ev apply auto apply arith done</pre>	<pre>his set are even.*} = 2*k" v.induct)</pre>	000
		A V
-u-:**- Ind.thy 1 proof (prove): step 1	13% L39 (Isar Utoks Abbrev; Scripting) base case: n replaced by 0	n
goal (2 subgoals): 1. ∃k. 0 = 2 * k 2. ∧n. [n ∈ Ev; ∃k. n	= 2 * k] $\implies \exists k$. Suc (Suc n) = 2 * k	
-u-:%%- *goals* tool-bar next	Top L1 (Isar Proofstate Utoks Abbrev;)	

An Example of Rule Induction

Nearly There!

$\odot \odot \odot$	Ind.thy	0
00 00 I 🔺 🕨 I 🕨	4 🖀 🔎 🚯 🐖 😄 🤣 🚏	
text{*All elements of f lemma "n ∈ Ev ⇒ ∃k. r apply (induct n rule:	this set are even.*} n = 2*k" Ev.induct)	0
<pre>apply auto apply arith done</pre>		
-u-·**- Ind thy	13% 140 (Isar Utoks Abbrev: Scripting)	4 ¥
	15% LHO (1301 OLOKS ADDICY, SCIEPCING)	5
proof (prove): step 2		
goal (1 subgoal): 1. ∧k. 2 * k ∈ Ev ⇒	∃ka. Suc (Suc (2 * k)) = 2 * ka	
-u-:%%- *goals*	Top L1 (Isar Proofstate Utoks Abbrev;)	
tool-bar next		//

Nearly There!

$\odot \odot \odot$	÷	Ind.thy	(\supset
00 00 I 🔺 🕨 I	H 🖀 🔎 🕦 🐖	🗢 🤂 🚏		
text{*All elements of lemma " $n \in Ev \implies \exists k$. apply (induct n rule:	<pre>this set are even n = 2*k" Ev.induct)</pre>	1.*}		0
<pre>apply auto apply arith done</pre>				
-u-:**- Ind.thv	13% L40 (Isar	Utoks Abbrev: Sc	ripting)	<u>.</u>
proof (prove): step 2	(200			N
goal (1 subgoal): 1. ∧k. 2 * k ∈ Ev =	⇒ ∃ka. Suc (Suc (2	2 * k)) = 2 * ka		
	Too difficu	It for auto		U.
-u-:%%- *goals* tool-bar next	Top L1 (Isar	Proofstate Utoks	Abbrev;)	•

Nearly There!

$\odot \odot \odot$	🧕 Ind.thy 🤤	
00 00 X < 🕨 Y	। 🖀 🔎 🕦 🐖 😄 🤣 🚏	
text{*All elements of t lemma " $n \in Ev \implies \exists k. n$ apply (induct n rule: E	his set are even.*} = 2*k" Ev.induct)	0
<pre>apply auto apply arith done</pre>		
-u-:**- Ind.thy	13% L40 (Isar Utoks Abbrev; Scripting)	
proof (prove): step 2		١
goal (1 subgoal): 1. ∧k. 2 * k ∈ Ev ⇒	∃ka. Suc (Suc (2 * k)) = 2 * ka	
	Too difficult for auto	
-u-:%%- *goals*	Top L1 (Isar Proofstate Utoks Abbrev;)	<u>*</u>
tool-bar next		//.

The arith Proof Method

$\odot \odot \odot$		Ind.tl	ny		\bigcirc
∞ ∞ ∡ ◄ ► ⊻ >	┥ 쓸 🔎 🌖)@ 🗧 🤋	0 🚏 👘		
text{*All elements of lemma " $n \in E_V \implies \exists k.$ " apply (induct n rule: apply auto apply auto	this set are n = 2*k" Ev.induct)	even.*}			0
• done					
					×
-u-:**- Ind.thy	13% L41	(Isar Uto	oks Abbrev;	Scripting)	
proof (prove): step 3					
goal: No subgoals!					
) + + (C
-u-:%%- *goals*	Top L1	(Isar Pro	ofstate Uto	oks Abbrev;)	
tool-bar next					11.

The arith Proof Method

Defining Finiteness

$\odot \odot \odot$			Ind.thy	\bigcirc				
00 00	⊼ ◀ ► ⊻)	🕂 🖀 🔎 🧃) 🕼 🤤 🤣 🙀					
subsect	ion{* Proofs ab	out finite	sets *}	n				
text{*T	<pre>text{*The finite powerset operator*}</pre>							
inductiv empty: I insert	ve_set Fin :: " I: "{} ∈ Fin" tI: "A ∈ Fin ==	'a set set" > insert a	where A ∈ Fin"					
declare	Fin.intros [in	tro]) 4 14				
-u-:**-	Ind.thy	18% L62	(Isar Utoks Abbrev; Scripting)					
-u-:%%-	<pre>*response*</pre>	All L1	(Isar Messages Utoks Abbrev;)					
tool-ba	r goto			11.				

Defining Finiteness

The Union of Two Finite Sets

\odot \odot		Ind.thy		\bigcirc
∞ ∞ ∡ ◄ ► ⊻ ►	4 🖀 🔎 🚯 💉	🗢 🤣 🚏		
<pre>lemma "[A ∈ Fin; B ∈ apply (induct A rule: apply auto done</pre>	Fin] ==> A ∪ Fin.induct)	B ∈ Fin"		0
-u-:**- Ind.thy	24% L68 (Isa	r Utoks Abbrev;	Scripting)	
<pre>proof (prove): step 1 goal (2 subgoals): 1. B ∈ Fin ⇒ {} ∪ B 2. \A a. [A ∈ Fin; B</pre>	∈Fin ∈Fin ⇒ A∪B	∈ Fin; B ∈ Fin]	⇒ insert a A ∪ B ∈ Fin	
	Top 11 (Ica	n Droofstato Ut	oks Abbrows	4
tool-bar next		r Proofstate Uto	UKS ADDrev; J	

The Union of Two Finite Sets

A Subset of a Finite Set

$\odot \odot \odot$	Ind.	.thy	\bigcirc
သ 😳 🗶 🔺 🕨 🗶	🕂 🖀 🔎 🚯 🐷 🖨	😔 🚏	
lemma "[A ∈ Fin; B ⊆ apply (induct A arbitr ▶apply auto	A] ==> B ∈ Fin" ary: B rule: Fin.ind	luct)	0
-u-:**- Ind.thy proof (prove): step 1	27% L79 (Isar Ut	toks Abbrev; Scripting)	
goal (2 subgoals): 1. ∧B. B ⊆ {} ⇒ B 2. ∧A a B. [A ∈ Fin;	≡Fin ∧B.B⊆A⇒B∈F	[;] in; B ⊆ insert a A] ⇒ B ∈ F	[:] in
-u-:%%- *goals* tool-bar next	Top L1 (Isar Pr	roofstate Utoks Abbrev;)	

A Subset of a Finite Set

A Subset of a Finite Set

A Crucial Point in the Proof

$\odot \odot \odot$			Ind.thy		\bigcirc
oo oo ∡		🆀 🔎 🚯 🐙	- 🗢 🔮 🛑		
lemma "[apply (ind	A ∈ Fin; B ⊆ A uct A arbitrary] ==> B ∈ F : B rule: Fir	in" .induct)		0
apply auto					0
					11
					Ă
-u-:**- In	d.thy 27	%L80 (Iso	ar Utoks Abbrev	; Scripting)	
proof (pro	ve): step 2				n
	haarl				
1. ∧A a l	Bgoal): B. [[∧B. B ⊆ A =	⇒ B ∈ Fin; B	⊆ insert a A]	\Rightarrow B \in Fin	
		now wł	nat??		
					U
					× v
-u-:%%- *g	oals* To	pL1 (Iso	ar Proofstate U	toks Abbrev;)	
tool-bar n	ext				11.

Time to Try Sledgehammer!

	Emacs	File	Edit	Options	Tools	Isabelle	Proof-Gener	ral	Maths	Tokens	Buffers	Help
Cool Cool	CO I	◀ I A ∈ F uct A	▶ ▼ in; B arbi	► 🏠 ⊆ A] trary: B	<pre></pre>	Logics Comma Show M Favouri Settings Start Isa Exit Isa Set Isab	ands le tes s abelle (C-c C- belle (C-c C-) belle Comman	-s) x)	Refu Quio Sled Disp Prin	ute (C-c C ckcheck (C <mark>gehamine</mark> olay Draft t Draft (C-	-a <r>) C-c C-a C- r (C-c C-a (C-c C-a (C-c C-a C-</r>	-q) a C-s) C-d) p)
-u-:'	**- In	d.thy	,	27% L	.80	Help (Isar Ut	oks Abbrev	▶	cripti	ng)		4 7
-u-:9	‰- * r	espon	se*	All L	.1	(Isar Me	ssages Uto	ks	Abbrev	;)		
												1

Success!

Success!

Success!

The Completed Proof

$\odot \odot \odot$		Ind.thy	\bigcirc
∞ ∞ ∡ ◄ ► ⊻ >	4 🖀 🔎 🐧) 🕼 🤤 🤣 🚏	
<pre>lemma "[A ∈ Fin; B ⊆ apply (induct A arbitra apply auto apply (metis Fin.inser _def subset_insert)</pre>	A] ==> B ary: B rule: tI Int_absor	<pre> ∈ Fin" : Fin.induct) rb1 Int_commute Int_insert_right Int_lower1 me </pre>	m 20
		(Teas III also Alabasas Casin Line)	4
-u-:**- Ind.thy	27% L85	(Isar Utoks Abbrev; Scripting)	
proof (prove): step 3 goal: No subgoals!			
			×
-u-:%%- *goals*	Top L6	(Isar Proofstate Utoks Abbrev;)	

How Sledgehammer Works

• It is always available, though it usually fails...

- It is always available, though it usually fails...
- It does not prove the goal, but returns a call to metis. This command usually works...

- It is always available, though it usually fails...
- It does not prove the goal, but returns a call to metis. This command usually works...
- The minimise option removes redundant theorems, increasing the likelihood of success.

- It is always available, though it usually fails...
- It does not prove the goal, but returns a call to metis. This command usually works...
- The minimise option removes redundant theorems, increasing the likelihood of success.
- Calling metis directly is difficult unless you know exactly which lemmas are needed.